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An Explicit Finite-Volume
Algorithm with Multigrid



Key Characteristics

• cell-centered data storage; the numerical solution for the state
variables is associated with the cells of the grid

• second-order finite-volume spatial discretization with added
numerical dissipation; a simple shock-capturing device

• applicable to structured grids
• explicit multi-stage time marching with implicit residual smoothing

and multigrid
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Spatial Discretization:
Cell-Centered Finite-Volume
Method



Spatial Discretization: Cell-Centered Finite-Volume Method

Cell centered data storage
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Spatial Discretization: Cell-Centered Finite-Volume Method
Integral form of conservation law:

d

dt

∫
V (t)

QdV +

∮
S(t)

n̂ · FdS =

∫
V (t)

PdV

2D, no source terms:
d

dt

∫
A

QdA+

∮
C

n̂ · Fdl = 0

Cartesian coordinates:
d

dt

∫
A

QdA+

∮
C

n̂ · (Eî+ F ĵ)dl =

∮
C

n̂ · (Ev î+ Fvĵ)dl

n̂dl = dyî− dxĵ

d

dt

∫
A

QdA+

∮
C

(Edy − Fdx) =

∮
C

(Evdy − Fvdx)
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Spatial Discretization: Cell-Centered Finite-Volume Method

Semi-discrete form:

Aj,k
d

dt
Qj,k + LiQj,k + LadQj,k = LvQj,k

Cell average:

Qj,k =
1

Aj,k

∫
Aj,k

QdA
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Inviscid and Viscous Fluxes

Inviscid operator (second order):

LiQ =
4∑

l=1

(Fi)l · sl

sl = (∆y)l î− (∆x)lĵ

(Fi)l =
1

2
(F−

i + F+
i ) =

1

2
(Q−v− +Q+v+)l + P̄l

P̄l = [ 0,
1

2
(p− + p+)l î,

1

2
(p− + p+)lĵ,

1

2
(p−v− + p+v+)l ]

T
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Inviscid and Viscous Fluxes

Viscous operator (second order)

Viscous flux tensor contains velocity derivatives∫
A

∇QdA =

∮
C

n̂Qdl

∫
A′

∂u

∂x
dA =

∮
C′

udy∫
A′

∂u

∂y
dA = −

∮
C′

udx

LvQ =

4∑
l=1

(Fv)l · sl
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Inviscid and Viscous Fluxes

Auxiliary cell A′B′C′D′ for computing viscous fluxes
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Iteration to Steady State



Mechanism for converging to steady state

• The ”error” is removed by 1) convecting out through the far-field
boundary and 2) through dissipation
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Multi-Stage Time-Marching
Method



Multi-Stage Time-Marching Method

d

dt
Qj,k = − 1

Aj,k
LQj,k

d

dt
Qj,k = − 1

Aj,k
(Li + Lad)Qj,k = −R(Qj,k)

Multi-stage method with q stages:

Q
(0)
j,k = Q

(n)
j,k

Q
(m)
j,k = Q

(0)
j,k − αmhR(Q

(m−1)
j,k ) m = 1, . . . , q

Q
(n+1)
j,k = Q

(q)
j,k
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Multi-Stage Time-Marching Method

λ− σ relation for 5-stage method:

du

dt
= λu

un = u0σ
n

σ = 1 + β1λh+ β2(λh)
2 + β3(λh)

3 + β4(λh)
4 + β5(λh)

5

β1 = α5

β2 = α5α4

β3 = α5α4α3

β4 = α5α4α3α2

β5 = α5α4α3α2α1
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Multi-Stage Time-Marching Method

real(λ h)

im
ag

(λ
 h

)
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Contours of |σ| for the five-stage time-marching method with β3 = 1/6,
β4 = 1/24, and β5 = 1/120. Contours shown have |σ| equal to 1, 0.8, 0.6, 0.4,
and 0.2.
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Multi-Stage Time-Marching Method

∂u

∂t
+ a

∂u

∂x
= 0

2nd-order centered differences with 3rd-order artificial dissipation (a ≥ 0)

− aδxu = − a

∆x

[
uj+1 − uj−1

2
+ κ4(uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2)

]

Eigenvalues:

λm = − a

∆x

{
i sin

(
2πm

M

)
+ 4κ4

[
1− cos

(
2πm

M

)]2}
m = 0 . . .M − 1
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Multi-Stage Time-Marching Method

λmh = −Cn

{
i sin

(
2πm

M

)
+ 4κ4

[
1− cos

(
2πm

M

)]2}
m = 0 . . .M − 1

real(λ h)

im
a

g
(λ

 h
)
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Plot of λh values given for M = 40, κ4 = 1/32, and Cn = 2.5 with contours of
|σ| for the five-stage time-marching method with α1 = 1/5, α2 = 1/4, and
α3 = 1/3. Contours shown have |σ| equal to 1, 0.8, 0.6, 0.4, and 0.2.
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Multi-Stage Time-Marching Method
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Plot of |σ| values vs. κ∆x for the spatial operator with Cn = 2.5, κ4 = 1/32,
and the five-stage time-marching method with α1 = 1/5, α2 = 1/4, and
α3 = 1/3.
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Multi-Stage Time-Marching Method

Change the αm values (and the Courant number):

real(λ h)

im
a
g

(λ
 h

)
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Plot of λh values for M = 40, κ4 = 1/32, and Cn = 3 with contours of |σ| for
the five-stage time-marching method with α1 = 1/4, α2 = 1/6, and α3 = 3/8.
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Multi-Stage Time-Marching Method
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Plot of |σ| values vs. κ∆x for the spatial operator with Cn = 3, κ4 = 1/32,
and the five-stage time-marching method with α1 = 1/4, α2 = 1/6, and
α3 = 3/8 (solid line). The dashed line shows the results with Cn = 2.5 and
α1 = 1/5, α2 = 1/4, and α3 = 1/3.
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Multi-Stage Time-Marching Method

Consider computing the artificial dissipation only on stages 1, 3, and 5:

R(m−1) =
1

A

(
LiQ

(m−1) +

m−1∑
p=0

γmpLadQ
(p)

)
γ10 = 1

γ20 = 1, γ21 = 0

γ30 = 1− Γ3, γ31 = 0, γ32 = Γ3

γ40 = 1− Γ3, γ41 = 0, γ42 = Γ3, γ43 = 0

γ50 = (1− Γ3)(1− Γ5), γ51 = 0, γ52 = Γ3(1− Γ5), γ53 = 0, γ54 = Γ5

Compute viscous terms on stage 1 only:

R(m−1) =
1

A

(
LiQ

(m−1) − LvQ
(0) +

m−1∑
p=0

γmpLadQ
(p)

)
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Multi-Stage Time-Marching Method
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Plot of λh values for M = 40, κ4 = 1/32, and Cn = 3 with contours of |σ| for
the five-stage time-marching method with α1 = 1/4, α2 = 1/6, and α3 = 3/8

with the artificial dissipation computed only on stages 1, 3, and 5.
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Multi-Stage Time-Marching Method
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Plot of |σ| values vs. κ∆x for the spatial operator with Cn = 3, κ4 = 1/32,
and the five-stage time-marching method with α1 = 1/4, α2 = 1/6, and
α3 = 3/8 with the artificial dissipation computed only on stages 1, 3, and 5
(solid line). The dashed line shows the results with the artificial dissipation
computed at every stage, and the dash-dot line shows the results with
Cn = 2.5 and α1 = 1/5, α2 = 1/4, and α3 = 1/3.
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Multi-Stage Time-Marching Method

Local Time Stepping

For example, for inviscid flow:

(∆t)j =
(∆x)j

(|u|+ a)j
Cn

Local time stepping is essential for fast convergence of an explicit scheme

For an explicit scheme, must be done more carefully than for an implicit
scheme

Does not address the problem of cells with high aspect ratios
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Multi-Stage Time-Marching Method

∂u

∂t
+ a

∂u

∂x
= ν

∂2u

∂x2

λm = − a

∆x
i sin

(
2πm

M

)
− 4ν

∆x2
sin2

(πm
M

)
m = 0, . . . ,M − 1

λmh = −Cni sin

(
2πm

M

)
− 4Vn sin

2
(πm
M

)
m = 0, . . . ,M − 1

Cn =
ah

∆x
≤ 4

Vn =
νh

∆x2
≤ 2.59

4
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Multi-Stage Time-Marching Method

hc ≤
4∆x

a

hd ≤ 2.59∆x2

4ν
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Multi-Stage Time-Marching Method
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Plot of λh values for M = 40, κ4 = 1/32 with contours of |σ| for the five-stage
time-marching method with α1 = 1/4, α2 = 1/6, and α3 = 3/8. Time step
based on minimum of hc and hd.

24



Multi-Stage Time-Marching Method

real(λ h)

im
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g
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Plot of λh values for M = 40, κ4 = 1/32 with contours of |σ| for the five-stage
time-marching method with α1 = 1/4, α2 = 1/6, and α3 = 3/8.

Time step based on 1

h
=

1

hc
+

1

hd

25



The Multigrid Method



The Multigrid Method

Coarse mesh construction for a cell-centered scheme

Recursive approach – so we will discuss a two-grid problem first
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The Multigrid Method

ODE system on fine mesh

d

dt
Qj,k = − 1

Aj,k
LQj,k = −Rj,k

Restrict residual to coarse mesh

I2hh Rh =
1

A2h

4∑
p=1

AhRh

Restrict solution to coarse mesh

Q
(0)
2h = I2hh Qh =

1

A2h

4∑
p=1

AhQh
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The Multigrid Method

ODE on coarse mesh

d

dt
Q2h = −[R2h(Q2h) + P2h]

Source term

P2h = I2hh Rh −R2h(Q
(0)
2h )

Drives the following to zero:

R2h(Q2h) + P2h = R2h(Q2h)−R2h(Q
(0)
2h ) + I2hh Rh
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The Multigrid Method

At first stage

−[R2h(Q
(0)
2h ) + P2h] = −[R2h(Q

(0)
2h ) + I2hh Rh −R2h(Q

(0)
2h )] = −I2hh Rh

At mth stage

Q
(m)
2h = Q

(0)
2h − αmh[R(Q

(m−1)
2h ) + P2h]

When restricting to the next coarser mesh level, the source term must be
included
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The Multigrid Method

Condition on restriction and prolongation operators:

pR + pP + 2 > pPDE

For example, pR = 0, pP = 1 for Navier-Stokes equations (pPDE = 2)

Prolongation operator with pP = 1 (see figure):

Ih2h∆Q =
1

16
(9∆Q1 + 3∆Q2 + 3∆Q3 +∆Q4)
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The Multigrid Method

Bilinear prolongation operator for cell-centered scheme in two dimensions
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The Multigrid Method

Prolong correction from coarse mesh to fine mesh:

Q
(corrected)
h = Qh + Ih2h(Q2h −Q

(0)
2h )
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The Multigrid Method

Four-grid V and W multigrid cycles
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The Multigrid Method

Full multigrid with four grids
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